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Abstract. In this paper we present a new approach to time series track-

ing using some main ideas from the paper published by Donald Michie in
1963. One of those ideas stands that is easier to solve a complex problem
by dividing it into many easy subproblems that are sequentially linked.
Using this idea we divide the time series in small parts, this divisions will
provide information of the amplitude behavior in order to “track” the
time series. The obtained results indicate that using this new approach
it is possible to track the time series with high accuracy and also deduce
more information about the time series. This approach could be applied
to any natural phenomena which can be represented as time series.

1 Introduction

In 1963, Donald Michie published a paper that describes a trial and error ma-
chine which learns to play the game “Noughts and Crosses” [1]. This device
was initially constructed from matchboxes and colored beads as shown in Fig. 1.
This machine is a perfect example of the game theory application. The game the-
ory is an interesting topic since the games provided a microcosm of intellectual
activity. Those thought processes which we regard as being specifically human
accomplishments, such as learn from experience, inductive reasoning, argument
for analogy, the formation and testing of hypotheses, are brought to into play
even in the simple games of mental skill.

As an example of this, the matchbox machine was used for a particular mental
activity of trial and error learning, and the mental task used, was the game of
“Noughts and Crosses”, sometimes known as “tic-tac-toe”, this game represent
a sequential decision process. Michie argued that a computer program could be
enabled to improve its performance through its own accumulating experience
[1].

In 1968 the matchbox machine was known as “Boxes” [2], first this project
was undertaken as a “fun project”, but there were more serious intentions to
demonstrate the principle that states: “it may be easier to learn to play many
easy games than a difficult one” [1]. Consequently, it may be advantageous to
decompose a game into a number of mutually independent sub-games even when
relevant information could be put out of reach in this process. The principle is
related to the method of subgoals in problem-solving [3] but different in one
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Fig. 1. The original matchbox machine known as “MENACE”.

fundamental aspect: subgoals are linked in series, while sub-games are played in
parallel.

The Boxes algorithm also was used in adaptive control problem in partic-
ularly the double pendulum [2]. In the adaptive control situation, where the
states variables are real numbers, the large game is infinitely large, and then the
sacrifice of information entailed in boxes approach is correspondingly extreme.

In this article, we used the one of the main ideas of the Boxes algorithm such
as; learn to play many easy problems than a difficult one. This means that would
be easier to learn the behavior of small parts of the time series than learn the
whole behavior of the time series. Each small part is contained in the so-called
“boxes” and they provide information about the amplitude behavior. In this
work, we use this idea in order to track the dynamics of some time series with
different behaviors.

The outline of this article is the following: firstly in section 2, we define the
concept we used for time series and the approach of the general ideas of Boxes
algorithm for time series tracking, in section 3, we explain the logic used and
the implemented methodology; in section 4 we explain the obtained results and
finally in section 5 some conclusions and future work are given.
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2 Implementing the Boxes Algorithm to Tracking Time
Series

We used the main idea from the Boxes algorithm explained before of divide the
problem into small parts. Instead of matchboxes we used intervals which contain
information about the amplitudes of the time series in order to track it. We

are interested in the study of the time series with new techniques to learn its
dynamics.

A time se.ries is a sequence of data points, measured typically at successive
times. The time series have information about the independent variables of a

system which determines its dynamics. In other words, a time series is a se-
quence of values over the time of a system z (¢)
experimental values [4][6][5]

which registers a sequence of
z(t1),z(t2),z (t3),...,x (ta) (1)
for some interval t = n with ¢ < ¢; < ..

. ; . < tn [4], see Fig. 2 to observe an
example of a time series.
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Fig. 2. Example of Lovaina time series.

In this work, we demonstrate that it is easier to learn the behavior of small
amplitude intervals of the time series than trying to learn the behavior of the
whole time series. That is because, the small intervals provided information from
some specific amplitude of the whole time series and that allows a better learning
of the behavior of it. We use this idea to generate a time series that tracks the
behavior of the original one and that is what we call time series tracking, i.e., we
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designed an algorithm that imitate the dynamics of a desired time series. The
difference between our approach and the divide and conquer algorithm is that
the last one works by recursively breaking down a problem into two or more
sub-problems of the same (or related) type, until these become simple enough
to be solved directly. The solutions to the sub-problems are then combined to
give a solution to the original problem (8].

During the implementation of this approach we use a pseudo-random number
this is a randomized algorithm or probabilistic algorithm.
This algoritm employs a degree of randomness as part of its logic. In common
practice, this means that the machine implementing the algorithm has access to
a pseudo-random number generator. The algorithm typically uses the random
bits as an auxiliary input to guide its behavior, in the hope of achieving good
performance in the “gverage case”. Formally, the algorithm’s performance will
be a random variable determined by the random bits, with (hopefully) good
expected value; this expected value is called the expected runtime. The “worst

case”is typically so unlikely to occur that it can be ignored [7].

generator therefore,

3 On the Approach for Tracking a Time Series

ention before the idea behind this approach is related with a principle
of subgoals in order to solve a complex problem by dividing the main problem
into many subproblems that are sequentially linked but at the same time these
subproblems are solved in parallel. Therefore, in this article we are using that
principle to analyze the amplitude from the time series dividing it into intervals

as is shown in the Fig. 3.
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obtain new information from the time series. Additionally

Fig. 3. Example of how we
e width

we can observe the division of the time series into ten intervals with the sam

The methodology used in this work follows the next steps:

— Normalize the original time series into the interval [0, 1].
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— Divide the normalized time series in eight intervals.

— Generate from a random variable the time series that tracks the dynamics
of the original one.

— Compute the tracking error between the original time series vs. the com-
puted.

The above steps can be exemplified in the next Figure 4.
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Fig. 4. Example of the metodology used for tracking time series. a) Normalization of
the time series, b)Division of the original time series, c) Computation of the tracking
time series, d) Difference between the both time series, e) Compute of the tracking
€error.

3.1 Normalization and Division

Broadly, normalization (also spelled normalisation) is any process that makes
something more normal, which typically means conforming to some regularity or
rule, or returning from some state of abnormality. In this approach normalization
is very important due to the fact that we want to compare two or more time
series from differents behaviors to prove the performance of this technique.

The following step is the division, this means the decision of how many
intervals we are going to consider to divide all the time series that will analyze.
From the mathematical definition an interval [z] is a conected subset of R. Even
when the interval is not closed, we shall keep to the notation [z]. The lower
bound 1b ([z]) of an interval [z], also denoted by z is defined as

z=1b([z]) £ sup{a € RU{~00,00} |Vz € [z],a < z} 2)
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Its upper bound ub ([z]), also denoted by Z, is defined as

z = ub([z]) £ inf {b € RU {—00, 00} |Vz € [z],z < b} 3)
Thus, z is the largest number on the left of [z] and T is the smallest number
on its right. The width of any non empty interval [z] is

w(z) £Z—z (4)
In order to tests our approach we choose arbitrary the following eight inter-
vals:

[—0.001, 0.125], [0.125, 0.25] , [0.25, 0.37] , [0.37, 0.5]

[0.5,0.625], [0.625,0.75], [0.75, 0.875], [0.875, 1] (5)
Where the b ([z]) are open intervals and the ub ([z]) are closed intervals.

3.2 Generation of the Time Series Tracking and its Error

The goal of this subsection is to find and extract information from the amplitude
of the time series. In order to do that, we generate a new time series that tracks
the behaviour of the original time series. The procedure we implemented is briefly

shown in Fig. 5.

1 for i=1 to lastPointTimeSeries -1

2 x(i)=actualPoint

3 xnext(i+1)=nextpoint

4 if x(1)=>1b([x]) and x(i)<ub([x])

5 if this is the first time this interval is visited then

6 compute randPoint=rand([Ib([x])], [ub([x]))

7 compute the error= x(i)-randPoint

8 else means that this interval was visited previously then
9 previosError=error(i-1)

10 if previosError>0.0009 then
by newlb([x])=randPoint
12 newub([x])=ub([x])
13 compute randPoint=rand([newlb([x])], [newub([x])])
14 compute the error=x(i)-randPoint
.15 end if
16 end if
17 endif
18 end for

Fig. 5. Main procedure to extract information from the original time series.

Firstly, we will start to moving a pointer from the first point of the original
time serie to the last point (lines 1-3 ). Then we do the validation of the interval
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and only the points from the time series that belongs to an specific intervalo
([x]) were considered in its analysis (lines 4-17). Thereafter the lines 5 to 8 only
are visited when the first points belonging to certain interval enter for first time,
because the lines 8 to 16 represent the training to get optimal rand numbers to
future points. In line 9 there is an interesting validation, we notice that if we
define a minimal error as in this case 0.0009 we obtaint better results than just
keep it trainig without this validation and we define this error because it give us
best results. If some points revisits the same interval and enter to line 11 means
that we need to redefine the lower bound Ib([z]) of the interval ([z]) in order to
enclose the new interval ([rewld ([z])], [rewud ([z])]) and obtain a better result
than the last computed.

The measure that we implemented in order to verify the performance of this
approach was the root mean square error (RMSE) which is a frequently-used
measure of the difference between values predicted by a model or an estimator
and the values actually observed from the thing being modeled or estimated. In
this particular case we used to measure the tracking error between the original
time series and the computed one. The RMSE is defined

n

Z (xo - zt)z
= (6)

where z, means the original points from the time series, x; means the tracking
series and n means the total number of the both time series [5).

4 Results

In order to verify the performance of this algorithm, we probed it with different
time series such as: periodic, quasiperiodic, chaotic, complex and stochastic sys-
tems [5]. The data base we used to the time series tracking was taken from the
reference [6] and is briefly shown in the Fig.6.

The software used in our simulations was Matlab 7.0®and the specification
of the hardware we used is a CPU Pentium 4 with 3.0 GHz and 512 MB of RAM.

Some of the numerous experiments we performed are showed in the Fig. 7
to 10, and we are going to briefly explain each of the figures. Firstly in fig. 7 a)
we depicted the zoom of the last 200 points of both time series, in order to see
the difference between the original time series and the tracking one and in b) we
can observe the errors at any time betwen the original point and the computed
one obtained by the proposed algorithm and also we obtain the tracking error
using the measure RMSE defined in the equation 6 and the error obtain of the
tracking the behaviour from the Sine time series is equal to 0.0007 meaning that
the tracking time series is resemblance to the original one as we can observe in
that figure.

As we can see from Fig. 6 the time series plotted in Fig. 8 has a complex
behavior which means that displays variation without being random and as can
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Time Series

Dynamical Behavior
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6. Some of the time series used to prove our technique. The time series marked

Fig.
ed to obtain the experimental results showed in this paper.

with (*) are the ones us

be seen in this figure the difference between the original time series and the
tracking one is minimum and this observation could be quantify by calculating
the RMSE wich is equal to 0.00093. It is important to mention that the plotted
points in this figure are the 300 last points in order to see the error between

both series.

In the Fig. 9 we observe the last 200 points of the Mackey-Glass time series
vs. the tracking one. This time series has a chaotic behaviour which means that it
describes the behavior of certain nonlinear dynamical systems that under certain
conditions exhibit dynamics that are sensitive to initial conditions (popularly
referred to as the butterfly effect). As a result of this sensitivity, the behavior
of chaotic systems appears to be random, because of an exponential growth of
errors in the initial conditions. Despite of its behavior the results indicate that
it is possible to track its dynamics and the RMSE obtained is equal to 0.018.

Finally, in Fig. 10 we observ the results obtained from the White Noise
time series wich has a stochastic behavior. A stochastic process is one whose
behavior is non-deterministic in that a state does not fully determine its next
state. Therefore, in this figure we observe that the tracking is very accuracy due

its behavior with a RMSE equal to 0.0024.

All the result indicates that it is possible to tracking time series from different
behaviors obtaining in all the cases a very low error between the original and
the time series tracking i.e., the RMSE.
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5 Conclusions

We have presented in this paper a new approach for time series tracking of differ-
ent behaviors from an easiest time series (periodical) to a more complex behavior
(chaotic). The tracking errors obtained with our technique demonstrated that
the time series tracking has a high accuracy.

In the literature we found very few algorithms for time series tracking which
makes a little difficult to compare our technique to others. Nevertheless, we
consider this new approach a very accuracy one, because of the tracking errors
that this technique obtains.

We think that some of the applications of the time series tracking are: track-
ing the trajectory of airplanes, reproduce music from the known music sheet
among others.

At this moment we are working on the formalization of some aspects such as
how many intervals is the best for any dynamic behavior of time series because
in this work we used eight intervals determining it in an arbitrary way.

Using the information obtained with the time series tracking we can expand
these results to a more difficult problem of time series namely, prediction. It
is important to keep in mind that any natural phenomena can be able to be

represented as a time series, and then it is possible to apply this approach in
several time series tracking.
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